

Contents

Determining Water Content inCompressed Air SystemsZ-159Determining Pressure Drop in Compressed Air Systems Z-161
Determining Flow and Pressure Drop in Water Systems Z-168
Determining Proper Air Valve Size Z-170
Savings with Dual Pressure Valves Z-172
Selected SI Units for Fluid Power Usage Z-175
Conversion Tables Z-176
Circuit Symbols Z-177
Useful Dimensional Data Z-178
Summary of Formulas and Equivalents Z-179
Useful Formulas Z-179

Figure 1. Water Vapor Cor

HOW TO DETERMINE WATER CONTENT IN COMPRESSED AIR SYSTEMS

The more sophisticated pneumatic equipment and instrumentation being used throughout the industry today requires greater attention to the purity of the compressed air which supplies this equipment. Compressed air, free of condensate, has become increasingly important for many industrial applications.
The question, "How much water or condensate must be removed from the system?" Today, more frequently requires an answer.
The data presented in Figure 1 permits simple determination of the amount of condensate to be found in a compressed air system under a variety of operating conditions-pressure, temperature, and humidity.
Figure 1 gives this information in pounds of water per 1,000 cubic feet of air at different operating temperatures (${ }^{\circ} \mathrm{F}$) and pressures (psig). The data presented, water vapor content of saturated air at various temperatures and pressures, represent the worst possible condition. There is no guarantee that the water vapor content of compressed air will be any less than saturation at any given operating pressure and temperature; therefore, the saturated content should be used in all calculations.

The Following Examples Illustrate the Use of Figure 1

Example 1:

How much condensate will there be in a compressed air system operating at 100 scfm and 100 psig if the air at the compressor intake is at a temperature of $80^{\circ} \mathrm{F}$ and 75% saturation (relative humidity)?
The water vapor content of air at $80^{\circ} \mathrm{F}, 75 \%$ saturation, and 0 psig (atmospheric pressure) is 1.12 pounds of water per 1,000 cubic feet of air (intersection of the 75% saturation line and the $80^{\circ} \mathrm{F}$ line see Figure 1).

If this air is compressed to 100 psig and then cooled to $70^{\circ} \mathrm{F}$, either in an after cooler or as it flows through the distribution piping, the maximum water vapor content that this air can carry is 0.15 pounds of water per 1,000 cubic feet of air (intersection of the 100 psig operating pressure line and the $70^{\circ} \mathrm{F}$ line).
The difference, 1.12-0.15 = 0.97 pounds of water per 1,000 cubic feet of air. This quantity of water appears in the system as condensate.
At an air consumption of 100 scfm , 6000 cubic feet of air will be compressed each hour. $6 \times 0.97=5.82$ pounds of water or 0.698 gallons of water must be removed from the system each hour.
In an eight-hour operating day,
$8 \times 0.698=5.584$ gallons of water must be removed from the system.

Example 2:

Assume, as in Example 1, that air is compressed at the rate of 100 scfm to an operating pressure of 100 psig and cooled to $70^{\circ} \mathrm{F}$. The water vapor content equals 0.15 pounds of water per 1,000 cubic feet of air (intersection of the 100 psig line and the 70° F line - see Figure 1).
If this air is then used in an environment at $0^{\circ} \mathrm{F}$, or if it is desired to maintain a $0^{\circ} \mathrm{F}$ dewpoint to protect delicate pneumatic equipment or instruments, additional condensate or ice will form.
At 100 psig and $0^{\circ} \mathrm{F}$, the saturated water vapor content of air is 0.0085 pounds of water per 1,000 cubic feet of air (intersection of the 100 psig line and the $0^{\circ} \mathrm{F}$ line). The difference, $0.1500-0.0085=0.1415$ pounds of water per 1,000 cubic feet of air, must be removed from the system.
Each hour of operation, $6 \times 0.1415=$ 0.849 pounds or 0.1018 gallons of water will appear as condensate.
In an eight-hour operating day, $8 \times 0.1018=0.814$ gallons of condensate.

Adding the results of Example 1 and 2, the total condensate to be removed from the system when air is compressed to 100 psig at the rate of 100 scfm and cooled to $0^{\circ} \mathrm{F}$ from a source at $80^{\circ} \mathrm{F}$ and 75% saturation is 5.584 plus $0.814=6.40$ gallons per eighthour day. If the air at the compressor intake was more than 75% saturation, the amount of condensate forming in the system would be even greater and could be as high as 8.86 gallons of water per eight-hour day.

Example 3:

If compressed air at 100 psig is saturated at $70^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{F}\right.$ dewpoint): What is the dewpoint at 40 psig? What is the dewpoint at 0 psig?
The water vapor content at 100 psig and $70^{\circ} \mathrm{F}$ is 0.15 pounds of water per 1,000 cubic feet of air (intersection of 100 psig line and $70^{\circ} \mathrm{F}$ line - see Figure 1). Move horizontally along the 0.15 vapor content line to the intersection with the 40 psig line read temperature: $50^{\circ} \mathrm{F}$. The dewpoint at 40 psig is $50^{\circ} \mathrm{F}$.
Continue along the 0.15 vapor content line to the intersection with the 0 psig line read temperature: $17^{\circ} \mathrm{F}$. The dewpoint at 0 psig (atmospheric pressure) is $17^{\circ} \mathrm{F}$.
 Operating Pressure — psig

Figure 1. Water Vapor Content of Saturated Air

HOW TO DETERMINE PRESSURE DROP IN COMPRESSED AIR SYSTEMS

Distribution Piping, Fittings, and Filters

The method used in this section represents a simplified approach to the determination of pressure drop in compressed air systems. It permits easy determination of the pressuredrop across any component installed in the system as well as determination of the pressure drop for the complete system or any segment of the system.
This method is based upon the recognized Darcy formula presented here in a somewhat different form:
$\Delta \mathrm{P}=\mathrm{KQ2}$ 1000 $\left[\begin{array}{c}14.71 \\ 14.7=P\end{array}\right]\left[\begin{array}{c}460+\mathrm{t} \\ 520\end{array}\right]$
$\Delta \mathrm{P}=$ Pressure drop (psig)
K = Constant for pipe or unit
Q = Constant for flow (scfm)
P = Working pressure (psig)
$\mathrm{t}=$ Compressed air temperature $\left({ }^{\circ} \mathrm{F}\right)$
Figure 2 presents the relationship between air flow (scfm) and pressure drop (psig) for $\mathrm{K}=1$. Figure 2, when used in conjunction with the values of K presented in Tables 1, 2 and 3 , readily permits the determination of pressure drop ($\Delta \mathrm{P}$) across any component installed in a compressed air system, the pressure drop of the entire system, or any segment of the system.

Example 1:

Determine the pressure drop ($\Delta \mathrm{P}$) in 150 feet of $3 / 4$ " schedule 40 pipe, at a flow of 80 scfm and an operating pressure of 100 psig:

1. Refer to Figure 2: Follow vertically the 80 scfm line to its intersection with the 100 psig operating pressure line.
2. Read the pressure drop ($\Delta \mathrm{P}$) at left corresponding to this intersection: $\mathrm{P}=0.8$.
3. Select from Table 1 the K value for 3/4" pipe: $K=5.93$.
4. Multiply $5.93 \times 0.8=4.74 \mathrm{psig}$ per 100 feet of pipe.
5. $\Delta \mathrm{P}$ for 150 feet of pipe equals $\frac{4.74 \times 150}{100}=7.11 \mathrm{psig}$ since pressure drop is proportional to length.

Example 2:

Determine the pressure drop in a system containing 100 feet of $3 / 4$ " schedule 40 pipe, two 90° standard elbows, one globe valve and one $3 / 4$ " 40 -micron filter (F74). The system pressure is 100 psig , and the flow requirement is 80 scfm :

1. Refer to Figure 2: Follow vertically the 80 scfm line to its intersection with the 100 psig operating pressure line.
2. Read the pressure drop $(\Delta \mathrm{P})$ at the left of the graph, corresponding to this intersection: $\Delta \mathrm{P}=0.8$ psig.
3. From Table 1, select the K value for $3 / 4$ " pipe: $K=5.93$
4. From Table 2, select the K value for $3 / 4$ " standard 90° elbow: $\mathrm{K}=0.119$. There are two elbows; therefore, multiply by 2 : $0.119 \times 2=0.238$.
5. From Table 2, select the K value for a fully open globe valve: $\mathrm{K}=1.36$.
6. From Table 3 , select the K value for a $3 / 4$ 40-micron filter (F74); K = 1.78.
7. Add the K values from steps $3,4,5$ and 6 $(5.930+0.238+1.360+1.78=9.308=K t)$.
8. Multiply the $\Delta \mathrm{P}$ value determined from step 2 by Kt: $0.8 \times 9.308=7.446$. The pressure drop under the foregoing conditions will be approximately 7.5 psig .
9. If a higher pressure drop is permissible, make a similar computation for $1 / 2$ " pipe and fittings; if a lower pressure drop is desirable, consider 1 " pipe and fittings.

Distribution Piping

Figures $3,4,5$ and 6 present the relationship between air flow (scfm) and pressure drop ($\Delta \mathrm{P}=\mathrm{psig}$) for pipe sizes $1 /{ }^{\prime \prime}$ through 3 " inclusive at operating pressures of 5 to 250 psig. Lines "A", "B", "C" and "D" represent the maximum flow for pressure drops equal to $5 \%, 10 \%, 20 \%$ and 40% of the supply pressure respectively over the operating range of 5 to 250 psig.
These figures are a convenience in that they permit direct reading of the pressure drop through 100 feet of schedule 40 pipe. The
pressure drop read from these charts will not always agree exactly with the pressure drop calculated from the information contained on Figure 2. The differences, however, are minor and result primarily from limiting the computations to three significant figures. The results obtained using either method are well within the accuracy capabilities of the flow computations.

Example 1:

Determine the pressure drop in 100 feet of $3 / 4$ " schedule 40 pipe at a flow rate of 150 scfm and an operating pressure of 100 psig:

1. Refer to Figure 4-follow the vertical 150 scfm line until it intersects the diagonal 100 psig applied pressure line.
2. Read the pressure drop on the scale at the left: 17 psig.
3. At an applied pressure of 100 psig , this represents a pressure drop of 17%. You will note that this point falls between lines "B" and "C" representing 10% and 20\% pressure drop.
4. If the operating pressure was 80 psig, a flow of 150 scfm would produce a pressure drop of 20 psig or 25% of the applied pressure. You will note that this point falls between the lines " C " and " D " indicating pressure drops of 20% and 40% respectively.

The information on the following tables and figures is based on a compressed air temperature of $60^{\circ} \mathrm{F}$.
For temperatures other than $60^{\circ} \mathrm{F}$, multiply the final result, $\Delta \mathrm{P}$ by $\underline{460+{ }^{\circ} \mathrm{F}}$

Fitting	Pipe Size								
	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
90° Standard Elbow	15.4	4.09	1.09	0.422	0.119	. 0432	. 01400	. 00711	. 00219
45° Standard Elbow	8.3	2.20	0.53	0.216	0.059	. 0216	. 00720	. 00382	. 00131
90° Street Elbow	25.8	6.80	1.91	0.686	0.196	. 0714	. 02320	. 01180	. 00406
-45 ${ }^{\circ}$ Street Elbow	13.3	3.56	0.91	0.343	0.107	0.365	. 01200	. 00607	. 00205
90° Long Radius Elbow	10.4	2.74	0.80	0.264	0.083	. 0282	. 00920	. 00468	. 00163
Standard Tee - Run	10.4	2.74	0.80	0.264	0.083	. 0282	. 00920	. 00468	. 00163
Standard Tee - Side	31.0	8.14	2.37	0.818	0.243	. 0845	. 02760	. 01390	. 00490
Globe Valve - Full Open	175.3	46.40	12.70	4.750	1.360	. 4820	. 15600	. 08150	. 02750
Gate Valve - Full Open	6.7	1.76	0.47	0.180	0.053	. 0183	. 00600	. 00295	. 00107
Angle Valve - Full Open	74.8	19.80	5.46	1.800	0.593	. 1990	. 06800	. 03470	. 01210

Table 2. Values of K for Commonly Used Fittings

Pipe Size	K
$1 / 8^{\prime \prime}$	2300.
$1 / 4^{\prime \prime}$	450.0
$3 / 8^{\prime \prime}$	91.0
$1 / 2^{\prime \prime}$	26.4
$3 / 4^{\prime \prime}$	5.93
1 "	1.66
$1-1 / 4^{\prime \prime}$	0.400
$1-1 / 2^{\prime \prime}$	0.174
2 "	0.0467
$2-1 / 2^{\prime \prime}$	0.0186
3 "	0.0060

Table 1. Values of K for 100 Feet of Schedule 40 pipe

Filter Type	Micron Size	Pipe Size								
		1/8"	1/4"	3/8"	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
F07	$\begin{gathered} 5 \\ 25 \\ 100 \end{gathered}$	$\begin{array}{r} 115 \\ 112 \\ 92 \end{array}$	$\begin{aligned} & 55.0 \\ & 49.0 \\ & 41.0 \end{aligned}$							
F72	$\begin{gathered} 5 \\ 25 \\ 40 \\ \hline \end{gathered}$		$\begin{aligned} & 22.62 \\ & 29.99 \\ & 15.71 \end{aligned}$	18.18 23.95 11.03						
F73	$\begin{gathered} 5 \\ 25 \\ 40 \\ \hline \end{gathered}$		$\begin{aligned} & 14.93 \\ & 14.93 \\ & 12.86 \end{aligned}$	$\begin{array}{r} 10.83 \\ 11.48 \\ 8.99 \end{array}$	$\begin{array}{r} 9.75 \\ 10.54 \\ 8.02 \end{array}$					
F74	$\begin{gathered} 5 \\ 25 \\ 40 \end{gathered}$			$\begin{aligned} & 5.15 \\ & 4.17 \\ & 3.67 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.72 \\ & 3.01 \\ & 2.52 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.92 \\ & 2.25 \\ & 1.78 \end{aligned}$				
F17	$\begin{gathered} 5 \\ 25 \\ 50 \\ 75 \end{gathered}$					$\begin{aligned} & .47 \\ & .34 \\ & .32 \\ & .32 \end{aligned}$	$\begin{aligned} & .34 \\ & .23 \\ & .20 \\ & .20 \end{aligned}$	$\begin{aligned} & .34 \\ & .20 \\ & .19 \\ & .19 \end{aligned}$	$\begin{aligned} & .340 \\ & .200 \\ & .190 \\ & .190 \end{aligned}$	
F18	$\begin{aligned} & 25 \\ & 50 \\ & 75 \end{aligned}$								$\begin{aligned} & .050 \\ & .036 \\ & .032 \\ & \hline \end{aligned}$	$\begin{aligned} & .028 \\ & .020 \\ & .018 \end{aligned}$

Table 3. Values of K for Norgren Filters

Applied	Nominal Standard Pipe Size										
PSIG	1/8"	1/4"	3/8"	1/2"	3/4"	$1 "$	1-1/4"	1-1/2"	2"	2-1/2"	3"
5	0.5	1.2	2.7	4.9	6.6	13	27	40	80	135	240
10	0.8	1.7	3.9	7.7	11.0	21	44	64	125	200	370
20	1.3	3.0	6.6	13.0	18.5	35	75	110	215	350	600
40	2.5	5.5	12.0	23.0	34.0	62	135	200	385	640	1100
60	3.5	8.0	18.0	34.0	50.0	93	195	290	560	900	1600
80	4.7	10.5	23.0	44.0	65.0	120	255	380	720	1200	2100
100	5.8	13.0	29.0	54.0	80.0	150	315	470	900	1450	2600
150	8.6	20.0	41.0	80.0	115.0	220	460	680	1350	2200	3900
200	11.5	26.0	58.0	108.0	155.0	290	620	910	1750	2800	5000
250	14.5	33.0	73.0	135.0	200.0	370	770	1150	2200	3500	6100

Use Table 4 as a guide in sizing piping and equipment in compressed air systems.

The flow values in Table 4 are based on a pressure drop as shown below.

Pressure Drop per 100 ft of Pipe	Pipe Size (Inches)
10\% of Applied Pressure	1/8, $1 / 4,3 / 8,1 / 2$
5\% of Applied	3/4, 1, 11/4,
Pressure	$11 / 2,2,21 / 2,3$

\triangle P PRESSURE DROP - PSIG
$\Delta \mathrm{P}$ - Pressure Drop per 100 Feet of Pipe - psig

$\Delta \mathrm{P}$ - Pressure Drop per 100 Feet of Pipe - psig

$\Delta \mathrm{P}$ - Pressure Drop per 100 Feet of Pipe - psig

$\Delta \mathrm{P}$ - Pressure Drop per 100 Feet of Pipe - psig

Figure 6. Air Flow - Pressure Drop Graph (2-1/2" \& 3" Pipe)
$\Delta \mathrm{P}$ - Pressure Drop per 100 Feet of Pipe - psig

HOW TO DETERMINE FLOW AND PRESSURE DROP IN WATER SYSTEMS

Table 5 is self-explanatory. For the conditions given, flow values can be read directly from the chart
Figure 7 is more versatile - it provides the means for determining pressure drop $(\Delta \mathrm{P})$ or flow (gp) for a variety of operating conditions.
Figure 7 gives the relationship between pressure drop ($\Delta \mathrm{P}$) and flow (gpm) for pipe sizes $1 / 8$ " to 3 ". Two auxiliary scales on Figure 7 provide the applied pressure corresponding to a $(\Delta \mathrm{P})$ of 5% and 10%.

The Following Examples Illustrate the Use of Table 5 and Figure 7

Example 1:

Determine the flow in $1 / 2$ " pipe (gpm) that will produce a pressure drop $(\Delta \mathrm{P})$ of 10 psig per 100 feet of pipe when operating at an applied pressure of 100 psig:
From Table 5, the flow can be read directly = 4.6 gpm or from Figure 7, locate the intersection of the diagonal line for $1 / 2^{\prime \prime}$ pipe and the $10 \mathrm{psig} \Delta \mathrm{P}$ line: Read flow $=4.6 \mathrm{gpm}$.

Example 2:

Determine the flow in $1 / 2$ " pipe (gpm) that will produce a pressure drop $(\Delta \mathrm{P})$ of 12 psig in 150 feet of pipe when operating at an applied pressure of 100 psig:
First—Determine the $\Delta \mathrm{P}$ for 100 feet of pipe:

$$
\Delta \mathrm{P}=\frac{12 \times 100}{150}=8 \mathrm{psig}
$$

Second-From Figure 7, locate the intersection of the diagonal line for $1 / 2$ " pipe and the $8 \mathrm{psig} \Delta \mathrm{P}$ line: Read flow $=4.2 \mathrm{gpm}$.

Example 3:

Determine the pressure drop $(\Delta \mathrm{P})$ in 75 feet of $3 / 4^{\prime \prime}$ pipe when operating at a flow of 10 gpm and an applied pressure of 150 psig :
First-From Figure 7, determine the $\Delta \mathrm{P}$ for 100 feet of $3 / 4$ pipe by locating the intersection of the diagonal line for $3 / 4$ " pipe and the 10 gpm line: Read $\Delta P=10 \mathrm{psig}$.
Second-For 75 feet of pipe:

$$
\Delta \mathrm{P}=\frac{75 \times 10}{100}=7.5 \mathrm{psig}
$$

Applied Pressure	Nominal Standard Pipe Size										
PSIG	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"
5	0.10	0.24	0.50	0.92	1.4	2.6	5.3	8.0	16	25	47
10	0.14	0.34	0.73	1.3	2.0	3.7	7.8	12	23	37	68
20	0.21	0.50	1.1	1.9	2.9	5.4	11	17	33	53	100
40	0.30	0.73	1.5	2.8	4.2	8.0	16	25	48	78	145
60	0.37	0.90	1.9	3.5	5.2	10	21	31	60	96	180
80	0.43	1.1	2.2	4.1	6.1	12	24	36	70	112	210
100	0.48	1.2	2.5	4.6	6.8	13	27	41	80	128	240
150	0.60	1.5	3.1	5.8	8.5	16	33	51	99	155	290
200	0.71	1.7	3.7	6.8	10	19	39	60	115	185	350
250	0.80	2.0	4.2	7.6	11	21	44	67	130	210	390

Table 5. Maximum Recommended Water Flow (gpm) Through A.N.S.I. Standard Weight Schedule 40 Pipe.

Use Table 5 as a guide in sizing piping in water systems.
The flow values in Table 5 are based on a pressure drop as shown below.

Pressure Drop per 100 ft of Pipe	Pipe Size (Inches)
10% of Applied	$1 / 8,14,3 \%, 1 / 2$
Pressure	
5% of Applied	$3 / 4,1,11 / 4$,
Pressure	$11 / 2,2,21 / 2,3$

HOW TO DETERMINE PROPER AIR VALVE SIZE

Most manufacturers catalogs give flow rating Cv for the valve, which was established using proposed National Fluid Power Association (NFPA) standard T3.21.3. The following tables and formulas will enable you to quickly size a valve properly. The traditional, often used, approach of using the valve size equivalent to the port in the cylinder can be very costly. Cylinder speed, not port size, should be the determining factor.
The following Cv calculations are based upon simplified formulas which yield results with acceptable accuracy under the following standard conditions: Air at a temperature of $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$
Absolute downstream or secondary pressure must be 53% of absolute inlet or primary pressure or greater. Below 53%, the air velocity my become sonic and the Cv formula does not apply. To calculate air flow to atmosphere, enter outlet pressure p2 as 53\% of absolute p2. Pressure drop $\Delta \mathrm{P}$ would be 47% of absolute inlet pressure. These valves have been calculated for a
$C v=1$ in Table 3.

Nomenclature

B Pressure Drop Factor
C Compression Factor
Cv Flow Factor
D Cylinder Diameter (IN)
F Cylinder Area (SQ IN)
L Cylinder Stroke (IN)
p1 Inlet or Primary Pressure (PSIG)
p2 Outlet or Secondary Pressure (PSIG)
$\Delta \mathrm{P}$ Pressure Differential (p1-p2) (PSID)
q Air Flow at Actual Condition (CFM)
Q Air Flow of Free Air (SCFM)
t Time to Complete One Cylinder Stroke (SEC)
T Absolute Temperature at Operating (${ }^{\circ} \mathrm{R}$) Pressure.
Deg R = Deg F + 460

Bore Size D (in.)	Push Bore F (sq. in.)	Bore Size D (in.)	Push Bore F (sq. in.)
$3 / 4^{\prime \prime}$.44	$4^{\prime \prime}$	12.57
$1^{\prime \prime}$.79	$4-1 / 2^{\prime \prime}$	15.90
$1-1 / 8^{\prime \prime}$.99	$5^{\prime \prime}$	19.64
$1-1 / 4^{\prime \prime}$	1.23	6 "	28.27
$1-1 / 2^{\prime \prime}$	1.77	$7{ }^{\prime \prime}$	34.48
$1-3 / 4^{\prime \prime}$	2.41	$8^{\prime \prime}$	50.27
2 "	3.14	10 "	78.54
$2-1 / 2^{\prime \prime}$	4.91	$12^{\prime \prime}$	113.10
$3-1 / 4^{\prime \prime}$	8.30	$14^{\prime \prime}$	153.94

Table 1: Cylinder Push Bore Area F for Standard Size Cylinders

Valve Sizing For Cylinder ActuationDirect Formula

cylinder area
(SQ IN)
(see table 1) $\mathbf{F x}$
cylinder stroke
(IN) L x
compression factor (see table 2) C
$\mathrm{Cv}=$

pressure drop	time to complete
factor $\mathbf{B} \mathbf{x}$	cylinder stroke $\mathbf{t} \mathbf{x 2 9}$
(see table 2)	(SEC)

Example:

Cylinder size 4" Dia. x 10" stroke. Time to extend: 2 seconds. Inlet pressure 90 PSIG. Allowable pressure drop 5 PSID. Determine Cv.

$$
\begin{gathered}
\text { Solution: Table 1 } \quad F=12.57 \mathrm{SQ} \text { IN } \\
\text { Table } 2 \quad C=7.1 \\
\quad B=21.6 \\
\mathrm{CV}=\frac{12.57 \times 10 \times 7.1}{21.6 \times 2 \times 29}=0.7
\end{gathered}
$$

Select a valve that has a Cv factor of 0.7 or higher. In most cases a $1 / 4 / 1$ valve would be sufficient
It is considered good engineering practice to limit the pressure drop $\Delta \mathrm{P}$ to approximately 10% of primary pressure p1. The smaller the allowable pressure drop, the larger the required valve will become.
After the minimum required Cv has been calculated, the proper size valve can be selected from the catalog.

Inlet Pressure (psig)	Com- pression Factor C	Pressure Drop Factor B For Various Pressure Drops Δ P				
	5 PSID	10 PSID	15 PSID	20 PSID		
10	1.7	6.5				
20	2.4	7.8	11.8			
30	3.0	8.9	13.6	18.0		
40	3.7	9.9	15.3	20.5	23.6	
50	4.4	10.8	16.7	22.6	26.4	29.0
60	5.1	11.7	18.1	24.6	29.0	32.0
70	5.8	12.5	19.3	26.5	31.3	34.8
80	6.4	13.2	20.5	28.2	33.5	37.4
90	7.1	13.9	21.6	29.8	35.5	39.9
100	7.8	14.5	22.7	31.3	37.4	42.1
110	8.5	15.2	23.7	32.8	39.3	44.3
120	9.2	15.8	24.7	34.2	41.0	46.4
130	9.8	16.4	25.6	35.5	42.7	48.4
140	10.5	16.9	26.5	36.8	44.3	50.3
150	11.2	17.5	27.4	38.1	45.9	52.1
160	11.9	18.0	28.2	39.3	47.4	53.9
170	12.6	18.5	29.0	40.5	48.9	55.6
180	13.2	19.0	29.8	41.6	50.3	57.2
190	13.9	19.5	30.6	42.7	51.7	58.9
200	14.6	20.0	31.4	43.8	53.0	60.4
210	15.3	20.4	32.1	44.9	54.3	62.0
220	16.0	20.9	32.8	45.9	55.6	63.5
230	16.7	21.3	33.5	46.9	56.8	64.9
240	17.3	21.8	34.2	47.9	58.1	66.3
250	18.0	22.2	34.9	48.9	59.3	67.7

Table 2: Compression Factor C and Pressure Drop Factor B.

Valve Sizing with $\mathbf{C v}=1$ Table

(For nomenclature see previous page)
This method can be used if the required are flow is known or has been calculated with the formulas as shown below:

Conversion of CFM to SCFM
2. $Q=q x \quad \frac{p_{2}+14.7}{14.7} \times \frac{528}{T}$ (SCFM)

Flow Factor Cv (standard conditions)
3. $\mathrm{Cv}=$

Proposed NFPA Standard T3.21.3
Maximum pressure drop $\Delta \mathrm{p}$ across the valve should be less than 10% of inlet pressure p_{1}.

Inlet Pressure (psig)	Air Flow Q (SCFM) for Variou Pressure Drops Δ P at $\mathbf{C v}$					
	2 PSID	5 PSID	10 PSID	15 PSID	20 PSID	ir Flow (SCFM) to Atmosphere
10	6.7					12.0
20	7.9	11.9				16.9
30	9.0	13.8	18.2			21.8
40	9.9	15.4	20.6	23.8		26.6
50	10.8	16.9	22.8	26.7	29.2	31.5
60	11.6	18.2	24.8	29.2	32.3	36.4
70	12.3	19.5	26.7	31.6	35.1	41.2
80	13.0	20.7	28.4	33.8	37.7	46.1
90	13.7	21.8	30.0	35.8	40.2	51.0
100	14.4	22.9	31.6	37.8	42.5	55.9
110	15.0	23.9	33.1	39.6	44.7	60.7
120	15.6	24.9	34.5	41.4	46.8	65.6
130	16.1	25.8	35.8	43.1	48.8	70.5
140	16.7	26.7	37.1	44.7	50.7	75.3
150	17.2	27.6	38.4	46.3	52.5	80.2
160	17.7	28.4	39.6	47.8	54.3	85.1
170	18.2	29.3	40.8	49.3	56.0	90.0
180	18.7	30.1	42.0	50.7	52.7	94.8
190	19.2	30.9	43.1	52.1	59.4	99.7
200	19.6	31.6	44.2	53.4	60.9	104.6
210	20.1	32.4	45.2	54.8	62.5	109.4
220	20.5	33.1	46.3	56.1	64.0	114.3
230	21.0	33.8	47.3	57.3	65.5	119.2
240	21.4	34.5	48.3	58.6	66.9	124.0
250	21.8	35.2	49.3	59.8	68.3	128.9

Table 3: Air Flow Q (SCFM) For $\mathrm{Cv}=1$
Flow Curves - How to Read Them

Area where the Cv formula is a valid and close approximation

Outlet or Secondary Valve Pressure (psig)

Example 1: Find air flow Q (SCFM) if Cv is known. Cv (from valve catalog) $=1.8$

Primary pressure p1 = 90 PSIG
Pressure drop across valve $\Delta \mathrm{P}=5 \mathrm{PSID}$
Flow through valve from Table 3 for $\mathrm{Cv}=1: 21.8$ SCFM

$$
\begin{array}{|l|}
\hline Q=C v \text { of valve } \times \text { air flow at } C v=1 \text { (SCFM) } \\
\underline{Q}=1.8 \times 21.8=\underline{39.2 ~ S C F M ~}
\end{array}
$$

Example 2: Find Cv if air flow Q (SCFM) is given.

Primary pressure p1 = 90 PSIG
Pressure drop $\Delta \mathrm{P}=10 \mathrm{PSID}$
Air Flow- $\mathrm{Q}=60$ SCFM
Flow through valve from Table 3 for $\mathrm{Cv}=1: 30$ SCFM

A valve with a Cv of minimum 2 should be selected.
Example 3: Find Cv if air flow Q (SCFM) to atmosphere is given (from catalog).

Primary pressure p1 = 90 PSIG
Air flow to atmosphere Q = 100 SCFM
Flow to atmosphere through valve from Table 3
for $\mathrm{Cv}=1: 51$ SCFM

Flow given in catalog is equivalent to a valve with $\mathrm{Cv}=2$. This conversion is often necessary to size a valve properly, since some manufacturers do not show the standard Cv to allow a comparison.

Example 4: Find Cv if cylinder size and stroke

 speed is known, using the formulas
1 and 3

Primary pressure $=90$ PSIG
Pressure drop across valve 5 PSID
Cylinder size 4" dia. x 10 " stroke
Time to complete stroke 2 sec .

$$
\begin{aligned}
& Q=0.0273=\frac{42 \times 10}{2} \times \frac{85+14.7}{14.7}=14.81 \text { SCFM } \\
& C v=\quad \frac{1.024 \times 14.81}{\sqrt{5 \times(85+14.7)}}=0.7
\end{aligned}
$$

SAVINGS WITH DUAL PRESSURES VALVES

SINGLE PRESSURE

"Dual pressure" means using two different supply pressures to the valve. One supply acts to extend the cylinder, and the other supply acts to retract the cylinder when the valve is shifted.
Justification of a dual pressure versus a single pressure valve can be done quickly, using this simple formula. Savings in air consumption is the most important consideration of the use of dual pressure valves.

Nomenclature

$D=$ Piston Diameter of Cylinder
K = Cost Savings per Hour
(IN)
p1 = Plant Air Pressure (\$HR)
p2 = Work Stroke Pressure (Reduced)
(PSIG)
p3 = Return Stroke Pressure (Reduced)
$\mathrm{t} 1=$ Work Stroke
t2 $=$ Return Stroke
S = Cylinder Stroke
(SEC)
$N=$ Cycles Per Minute
$Z=$ Cost to compress 1000 SCF of air to 150 psig
(1976 estimate: $\$ 0.24 / 1000$ SCF at 150 psig. Source: Assembly Engineering, page 50, May 1976)

Assumptions:

1. Rod diameter of cylinder is partially accounted for in the constant $(560,000)$. Except for very small cylinders, where the use of dual pressure is questionable anyway, the formula is sufficiently accurate for most practical applications.
2. Atmospheric Pressure $=14.7$ psia
3. Standard Temperature $=68^{\circ} \mathrm{F}$

Example:

Work Stroke $\mathrm{t}_{1}=2 \mathrm{sec}$
Return Stroke $\mathrm{t}_{2}=2 \mathrm{sec}$
Plant Air Pressure $p_{1}=150$ psig
Work Stroke Pressure $p_{2}=100 \mathrm{psig}$
Return Stroke Pressure $p_{3}=30 \mathrm{psig}$
Cost of 1000 SCF Compressed Air $Z=\$ 0.24$

$$
N=\frac{60}{2+2}=15
$$

Calculate Savings per 8 Hour Shift
$K=\frac{2^{2} \times 12 \times(150 \times 2-100-30) \times 0.24 \times 15}{5.6 \times 10^{5}}=\$ 0.053 / \mathrm{HR}$

Savings are \$0.42 for 8 hours

Conclusion:
As demonstrated in this example, savings for just one small cylinder result in a very short pay back period for the required additional one or two regulators. It should be kept in mind that a pressure reduction will result in a cylinder speed reduction. It is also important that relieving regulators be used.

SELECTED SI UNITS FOR FLUID POWER USAGE

Extracted from ISO 1000 with National Fluid Power Association Permission

Quantity	Symbol	Customary U.S. Unit		SI Units				Notes
			Abbreviation	Preferred Unit				
Angular Velocity	ω	radian per second	rad/s	$\mathrm{rad} / \mathrm{s}$				
Area	A or S	square inch	i^{2}	cm^{2}	m^{2}	mm^{2}		
Bulk Modulus Liquids)	K	pounds per square inch	psi	bar	$\mathrm{N} / \mathrm{m}^{2}$			
Capacity (Displacement)	V	cubic inches per revolution	cipr	ml / r	I/r			1,7
Coefficient of Thermal	α	${ }^{\circ} \mathrm{F}$-1	$1 /{ }^{\circ} \mathrm{F}$	1/K				
Expansion (cubic)								
Dynamic Viscosity	μ	centipoise	cP	cP	P	Pa s		2
Efficiency	η	percent		percent				3
Force	F	pound (f)	(lb) f	N	kN			
Frequency	f	cycles per second	cps	Hz	kHz			
Kinematic Viscosity	v	Saybolt Universal Seconds	SUS	cSt	$\mathrm{m}^{2} / \mathrm{s}$			4, 9
Length	I	inch	in.	mm	m	$\mu \mathrm{m}$		
Linear Velocity	v	feet per second	ft / s	m / s				
Mass	m	pound (m)	$\mathrm{lb}(\mathrm{m})$	kg	Mg	g		
Mass Density	ρ	pound (m) per cubic foot	$\mathrm{lb}(\mathrm{m}) / \mathrm{ft}{ }^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{kg} / \mathrm{dm}^{3}$	kg/l		5
Mass Flow	M	pound (m) per second	$\mathrm{lb}(\mathrm{m}) / \mathrm{s}$	kg/s	g / s			
Power	P	horsepower	HP	kW	W			
Pressure (Above Atmospheric)	p	pounds per square inch	psi	bar	mbar	Pa	kPa	6
Pressure (Below Atmospheric)	p	inches of mercury, absolute	in. Hg	bar, abs	Pa	kPa		6
Quantity of Heat	Q_{C}	British Thermal Unit	BTU	J	kJ	MJ		
Rotational Frequency (Shaft Speed)	n	revolutions per minute	RPM	r/min	r/s			
Specific Heat Capacity	C	British Thermal Unit per pounds mass degree Fahrenheit	BTU/lb(m) ${ }^{\circ} \mathrm{F}$	J (kgK)				
Stress (Materials)	σ	pounds per square inch	psi	daN/mm ${ }^{2}$	MPa			
Surface Roughness		microinch	μ in	grade N_{-}	$\mu \mathrm{m}$			10
Temperature (Customary)	θ	degree Fahrenheit	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$				
Temperature (Interval)		degree Fahrenheit	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$				
Temperature (Thermodynamic)	T	Rankine	${ }^{\circ} \mathrm{R}$	K				
Time	t	second	S	min	S	μ		
Torque (Moment of Force)	T	pounds (F) - inch	lb (f) - in.	Nm	kNm	mNm		
Volume	V	gallon	U.S. gal	1	m^{3}	cm^{3}		7
Volumetric Flow (Gases)	Q (ANR)	standard cubic feet per minute	scfm	$\mathrm{dm}_{\mathrm{n}}^{3 / \mathrm{s}}$	$\mathrm{m}_{\mathrm{n}}^{3 / \mathrm{s}}$	$\mathrm{cm}^{3 / \mathrm{s}}$		8
Volumetric Flow (Liquids)	Q	gallons per minute	USGPM	$1 / \mathrm{min}$	I/sec	ml / s		7
Work	W	foot-pound (f)	$\mathrm{ft}-\mathrm{lb}(\mathrm{f})$	J				

Notes to the Table of Selected SI Units for Fluid Power Usage

1. The capacity (displacement) of a rotary device is given as "per revolution" Non-rotary devices are expressed as "per cycle".
2. The centipoise, cP , is a non-SI unit, use of which is permitted by ISO 1000 . The centipoise is equal to $10^{-3} \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}$.
3. Efficiencies are normally stated as "percent" but the use of a ratio is also permitted.
4. The centistokes, cSt, is a non-SI unit, use of which is permitted by ISO 1000. The centistokes is equal to $10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
5. Subject to change to kg/_ to correspond to recent action by ISO/TC 28 (Petroleum Fluids)
6. The bar is a non-SI unit, use of which is permitted by ISO 1000. The bar is a special name for a unit of pressure and is assumed to be "gage" unless otherwise specified. $1 \mathrm{bar}=100 \mathrm{kPa} ; 1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
7. The litre is a non-SI unit use of which is permitted by ISO 1000. The litre is a special name for a unit of liquid measure and is exactly equal to the cubic decimetre.
8. The abbreviation "ANR" means that the result of the measurement has been referred to the Standard Reference Atmosphere (Atmosphere Normale de Reference) as defined in clause 2.2 of ISO/R 554,
"Standard atmospheres for conditioning and/or testing - Standard reference atmosphere - Specifications." This abbreviation should immediately follow the unit used or the expression of the quantity.
9. For conversion from U.S. to Si units, see ANSI/Z11.129-1972 (ASTM/D2161-1971).
10. For conversion from U.S. to SI units, see ISO/R 1302-1971.

CONVERSION TABLES

To Convert	Into	Multiply By
atmospheres	bar	1.0135
atmospheres	mm of mercury	760.0
atmospheres	pounds/sq. in.	14.696
bars	atmospheres	0.9869
bars	kilopascal	100.0
bars	Newton/sq. meters	100,000.0
bars	pounds/sq. in.	14.5
Btu	foot-lbs.	778.3
Btu	horsepower/hrs	3.927×10^{-4}
Btu	joules	1054.8
Btu	kilogram-calories	0.252
Btu	kilowatts-hrs.	2.928×10^{-4}
Btu/pound ${ }^{\circ} \mathrm{F}$	kilogram-calories/kg ${ }^{\circ} \mathrm{C}$	1.0
Centigrade	Fahrenheit	$9 / 5 C^{\circ}+32^{\circ}$
Centigrade	Kelvin	$\mathrm{C}^{\circ}+273^{\circ}$
centimeters	feet	0.0328
centimeters	inches	0.3937
centipoise	gram/cm. sec.	0.01
centipoise	pound mass/ft. sec.	0.000672
centistokes	sq. feet/sec.	1.076×10^{-6}
cubic centimeters	cu inches	0.06102
cubic feet	Cu CmS	28,317.0
cubic feet	cu meters	0.028317
cubic feet	liters	28.317
cubic feet/min.	cu dms.sec.	0.472
cubic feet/min.	pounds of air/hr.	4.5
cubic feet/min.	cu Newton meters/hr.	1.7
cubic inches	Cu CmS	16.39
cubic inches	cu mm	16,387.0
cubic inches	liters	0.01639
cubic meters	cu feet	35.31
Fahrenheit	Centigrade	5/9 ($\mathrm{F}^{\circ}-32^{\circ}$)
Fahrenheit	Rankine	$\mathrm{F}^{\circ}+460^{\circ}$
feet	centimeters	30.48
feet	meters	0.3048
feet	millimeters	304.8
foot-pounds	Newton-meters	1.356
foot-pounds/sec.	Newton meters/sec.	1.356
gallons (US)	liters	3.785
gallons/min.	cu in./min.	231.0
gallons/min.	liters/min.	3.785
gallons/min.	pounds of water/hr.	500.0
grams	ounces (avdp)	0.3527
grams/cu cm	pounds/cu ft	62.43
grams/cu cm	pounds/cu in.	0.03613
horsepower	foot-lbs/min.	33,000.00
horsepower	foot-lbs/sec.	550.0
horsepower (metric)	horsepower	0.9863
horsepower	horsepower (metric)	1.014
horsepower	watts	745.7
inches	centimeters	2.54
inches	meters	0.0254
inches	millimeters	25.4
inches of mercury	pounds/sq. in.	0.4912
inches of water ($4^{\circ} \mathrm{C}$)	pounds/sq. in.	0.03613
kilograms	pounds	2.205
kilograms/cu meter	pounds/cu ft.	0.06243
kilograms-calories	Btu	3.968
kilopascal	bar	0.01
kilopascal	psi	0.145
kilowatt-hrs.	Btu	3415.0

To Convert	Into	Multiply By
liters	cu dm	1.0
liters	cu feet	0.0351
liters	cu inches	61.02
liters	cu meters	0.001
liters	gallons (US)	0.2642
liters/min	gals/min	0.2642
meters	feet	3.281
meters	inches	39.37
meters	yards	1.094
millimeters	inches	0.03937
millimeters of mercury	psi	0.0194
Newton/sq. meter	pascal	1.0
Newton-meter	foot-pounds	0.7375
Newton-meter	joule	1.0
Newtonmeter/sec.	foot-pounds/sec.	0.7375
Newton-meter/sec.	watts	1.0
ounces	grams	28.35
pounds	kilograms	0.4536
pounds/cu ft.	grams/cu cm	0.01602
pounds/cu ft.	kgs/cu meter	16.02
pounds/cu in.	$\mathrm{gms} / \mathrm{cu} \mathrm{cm}$	27.68
pounds/hr.	kilograms/hr.	0.454
pounds/sec.	kilograms/hr.	1,633.0
pounds-sec./sq. ft.	pounds mass/ft. sec.	32.2
pounds/sq. in.	atmospheres	0.06804
pounds/sq. in.	bar	0.069
pounds/sq. in.	inches of mercury	2.036
pounds/sq. in.	inches of water	27.7
pounds/sq. in.	kilopascal	6.895
pounds/sq. in.	mm of mercury	51.6
square centimeters	sq. feet	0.001076
square centimeters	sq. inches	0.155
square feet	sq. cms	929.0
square feet	sq. meters	0.0929
square feet/sec.	centistokes	92,903.0
square inches	sq. cms	6.452
square inches	sq. millimeters	645.2
square meters	sq. feet	10.76
square meters	sq. yards	1.196
square millimeters	sq. inches	0.00155
square yards	sq. meters	0.8361
tons (metric)	kilograms	1000.0
tons (metric)	pounds	2205.0
tons (short)	pounds	2000.0
tons (short)	tons (metric)	0.9072
yards	meter	0.9144

CIRCUIT SYMBOLS

Pressure Gauge

Muffler

Adjustable Flow Control Valve

Check Valve

USEFUL DIMENSIONAL DATA

Diameter		Internal Area Sq. In.			
		Circle Area	Hose	Std. Pipe	. 032 Wall Copper Tubing
1/32	(.0312)	. 00077			
1/16	(.0625)	. 00307			
3/32	(.0938)	. 0069			
1/8	(.1250)	. 01227	. 01227	. 057	. 0029
5/32	(.1562)	. 01917			
3/16	(.1875)	. 02761			. 012
7/32	(.2188)	. 03758			
1/4	(.2500)	. 04909			. 0271
9/32	(.2812)	. 06213			
5/16	(.3125)	. 0767			. 0485
11/32	(.3438)	. 09281			
3/8	(.3750)	. 1104	. 11	. 191	. 076
13/32	(.4062)	. 1296			
7/16	(.4375)	. 1503			. 1095
15/32	(.4688)	. 1726			
1/2	(.5000)	. 1963	. 196	. 304	. 149
17/32	(.2217)	. 2217			
9/16	(.2485)	. 2485			
19/32	(.2769)	. 2769			
5/8	(.3068)	. 3068	. 307		. 247
21/32	(.5312)	. 3382			
11/16	(.5625)	. 3712			
23/32	(.5938)	. 4057			
3/4	(.7500)	. 4418	. 442	. 533	. 370
13/16	(.8125)	. 5185			
7/8	(.8750)	. 6013			
15/16	(.9375)	. 6903			
1	(1.000)	. 7854	. 785	. 864	. 594
1-1/4	(1.250)	1.2272	1.227	1.496	. 922
1-1/2	(1.500)	1.767		2.036	
2	(2.000)	3.1416	3.14	3.356	
2-1/2	(2.500)	4.9088		4.788	
3	(3.000)	7.07	7.07	7.39	
3-1/2	(3.500)	9.62			
4	(4.000)	12.57	12.57		
5	(5.000)	19.64			
6	(6.000)	28.27			
7	(7.000)	38.49			
8	(8.000)	50.27			
10	(10.000)	78.54			

Area and Volume	$A=D^{2} \times 0.7854\left(\right.$ or $\left.A=\pi R^{2}\right)$
V	$=D^{2} \times 0.7854 \times L$
	Area $/ 0.7854$ $(A$$=$ area in sq. in, diameter in inches, $V=$ volume in cu. in., $L=$ length

Temperature \quad Absolute temperature ${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460$

Flow	$\begin{aligned} & s c f m=(\text { area in sq. inches } \times \text { stroke inches } \times \text { CPM *) } / 1728 \\ & \frac{c f m}{}=\text { area in sq. inches } \times \text { velocity in ft./min. } \\ & 144 \text { in}^{2} / \mathrm{ft}^{2} \\ & s c f m=c f m \times \text { compression ratio } \end{aligned}$	* CPM $=$ Cycles per minute

Pressure Drop ($\Delta \mathbf{P}$)	psid $=$ P1 -P 2
	$\Delta \mathrm{P}$ Averaged for distance $=\frac{\text { psig rcvr. }- \text { psig tool }}{\text { distance } \mathrm{ft} .}$

Pressure / Volume	Boyles Law $-\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ General Gas $L a w-\frac{\mathrm{P}_{1} V_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$ Charles Law (variation) $-\mathrm{P}_{1} \times \mathrm{V}_{1} \times \mathrm{T}_{1}=\mathrm{P}_{2} \times \mathrm{V}_{2} \times \mathrm{T}_{2}$

Coefficient of Flow $\quad \mathrm{CV}=\frac{\mathrm{Q}(\mathrm{scfm})}{22.67} \quad . \sqrt{\frac{{ }^{\circ} \mathrm{F}+460}{\Delta \mathrm{P} \times \mathrm{K}}}$
$K=P 2$ absolute...if ΔP is less than 10%
$K=\left(P_{1}\right.$ abs. $+\mathrm{P}_{2}$ abs.) $/ 2$...if $\Delta \mathrm{P}$ is 10% to 25%
$\mathrm{K}=\mathrm{P}_{1}$ absolute...if $\Delta \mathrm{P}$ is greater than 25% (critical velocity)

Line Drop	drop/inches $=$ run $/ \mathrm{ft} \times \%$ grade $\times 0.12$ $\%$ grade $=($ drop $/$ inches $/ 0.12) /$ run $/ \mathrm{tt}$ $\%$ to 2% grade recommended

Compressed Air Cost Cost = cfm $\times 60 \times \#$ hrs. $\times \mathrm{kWh} / \mathrm{cfm} \times \$ / \mathrm{kWh}$

Vacuum	\quad negative psig $=$ inches $\mathrm{Hg} \times 0.49$ inches $\mathrm{Hg}=\mathrm{ps} / 0.49$ inches $\mathrm{Hg} \times 1.133=\mathrm{ft} . \mathrm{H}_{2} \mathrm{O}$ inches $\mathrm{H}_{2} \mathrm{O} \times 0.036=\mathrm{psi}$ 1 foot $\mathrm{H}_{2} \mathrm{O} \times 0.8826=1$ inch Hg Force $=-\mathrm{P} \times \mathrm{A}$ Lifting force $=$ inches $\mathrm{Hg} \times 0.4912 \times$ sq. in.area
Receiver Sizing	$\begin{aligned} & \text { Volume (gallons) }=\mathrm{K} \times \text { cfm } \times \frac{14.7}{\mathrm{psig}+14.7} \times 7.48 \\ & \text { Volume (gallons) }=\mathrm{K} \times \text { cfm } \times \frac{14.7}{\mathrm{psig}+14.7} \times \frac{1728}{231} \\ & (\mathrm{~V}=\text { volume/gal. } \mathrm{K}=1 \text { continuous, } \mathrm{K}=3 \text { intermittent) } \\ & \text { (} 7.48 \text { converts cu. ft. to gal.) } \\ & \text { Time }=\frac{\text { cu. ft. volume } \times \text { (Pmax-Pmin.) }}{\text { cfm rcvr. consumption } \times 14.7} \end{aligned}$

Cylinder Velocity \quad Velocity (ft./sec. extend)	$=\frac{\text { inches stroke }}{\text { extend time seconds }}+\frac{\text { extended dwell sec. } \times 60}{12}$	
\qquad	Velocity (ft./sec. retract)	$=\frac{\text { inches stroke }}{\text { extend time seconds }}+\frac{\text { extended dwell sec. } \times 60}{12}$

[^0]
Electrical

$\operatorname{Sin} 30^{\circ}=0.500 \quad \operatorname{Sin} 45^{\circ}=0.707 \quad \operatorname{Sin} 60^{\circ}=0.866$
$\operatorname{Cos} 30^{\circ}=0.866 \quad \operatorname{Cos} 45^{\circ}=0.707 \quad \cos 60^{\circ}=0.500$
$\sin \varnothing=$ opposite $/$ hypotenuse $\cos \varnothing=$ adjacent / hypotenuse
secant $\varnothing=$ hypotenuse / adjacent cosecant $\varnothing=$ hypotenuse / opposite
$\tan \varnothing=$ opposite $/$ adjacent $\quad \operatorname{cotan} \varnothing=$ adjacent / opposite
hypotenuse $=\bigvee$ (adjacent squared + opposite squared)

Mechanical

$$
\begin{aligned}
& \text { Speed Ratio }=\frac{\text { driven shaft or gear }}{\text { drive shaft or gear }} \\
& \text { Torque }=\text { force } \times \text { radius } \\
& \text { Force }=\text { torque } / \text { radius } \\
& \text { Motor Torque lb. }-\mathrm{ft.}=5252 \times \mathrm{hp} / \mathrm{rpm} \\
& \text { Motor Torque lb.- in. }=63025 \times \mathrm{hp} / \mathrm{rpm} \\
& \text { Motor hp }=\mathrm{lb} . \text {. } \mathrm{in} \text {. torque } \times \mathrm{rpm} / 5252 \\
& \text { Motor } \mathrm{hp}=\mathrm{lb} .- \text { in. torque } \times \mathrm{rpm} / 63025 \\
& \text { Work }=\text { force } \times \text { distance } \\
& \text { Power }=\text { force } \times \text { distance } / \text { time }
\end{aligned}
$$

$$
\text { Horesepower - hp = rpm x ft. Ib. torque / } 5252
$$

$$
\text { First class lever = F1 x L1 = F2 x L2 (F = force, L = Length })
$$

$$
\text { Third class lever }=\text { F1 } \times \text { L2 }=\text { F2 } \times \text { L1 }(F=\text { force, } L=\text { length })
$$

Mechanical advantage $=$ total rod length $/$ supported rod length
Bending moment $=$ mechanical advantage x side force
Total Force = coefficient of friction x load
Up incline force = surface force + incline force
Down incline force = surface force - incline force
Surface force = coefficient of friction $\times \operatorname{load} \times \operatorname{Cos} \theta$
Incline force $=10 a d x \sin \theta$
Force along an incline $=\mathrm{F} 1 \times \mathrm{D} 1=\mathrm{F} 2 \times \mathrm{D} 2$ ($\mathrm{F}=$ force, $\mathrm{D}=$ distance)
Rotary actuator torque - Torque $=\mathrm{psig} \times$ area \times pitch radius

Mechanical Cont.	Gripper $-F_{1} \times L_{1}=F_{2} \times 2$ or $F_{2}=F_{1} \times L_{1} / L_{2} \quad(F=$ force, $L=$ load $)$ Jib Crane force $=L \times\left(D_{1}+D_{2}\right) / \sin \times D_{1}$ Jib Crane load $=F \times \operatorname{Sin} X D_{1} /\left(D_{1}+D_{2}\right)$ (L = load Ibs., D1 = distance (in.) pivot to rod clevis. D2 = distance (in.) rod clevis to load) Feet per minute $=0.2618 \times$ dia. inches $\times \mathrm{rpm}$ Inches $\mathrm{Hg}=$ inches $\mathrm{H}_{2} \mathrm{O}$ / specific gravity Hg Intensifier sizing - Pressure air x area air $=$ pressure oil x area oil Max. flow throgh an orifice (critical backpressure ratio) $=>53 \%$ P1 abs. GPM $=$ Area in. x Stroke in. x cycles per mn. $\times 0.004329$

Terminal Velocity $\quad=2 \times$ distance $/$ time in seconds
Kinetic Energy (KE) = weight \times terminal velocity squared
(Acceleration of Gravity $=32.2 \mathrm{ft} . / \mathrm{sec} . / \mathrm{sec}$. OR 9.81 Meters $/ \mathrm{sec} . / \mathrm{sec}$.)

Common Friction Factors

Gate Valves		Friction Factors
	full-open	0.19
	$1 / 4$ closed	1.15
	$1 / 2$ closed	5.60
3/4 closed	24.00	
Globe valve	10.00	
Plug cock	0.26	
Swing check	2.50	
45° elbow	0.42	
90° elbow	0.90	
Close return bend	2.20	
Standard tee	1.80	

[^0]: Moisture Content of Air
 Dewpoint = Temperature at which moisture will condense
 Relative Humidity $=$ (Absolute humidity / humidity at saturation $\times 100$

